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1. INTRODUCTION

N
The P°T criterion for the onset of detonation, first proposed by Walker
and Wasley,! has become a central issue in the study of detonation mechanics.
. Although the criterion has been criticized, most recently by Moulard,? the
L criterion has been extensively employed and supported by experimental studies.®”’
3 E. H. Walker® has recently employed the criterion successfully in a study
comparing fratricide initiation in a variety of artillery shells with differing
explosive fills. Thus, any satisfactory understanding of detonation onset will

N
require an understanding of the P™T mechanism.

A number of studies? !3 have sought to derive or calculate values

for the P2T criterion, but none has provided a strictly physical theory

free of ad Foc assumptions as to the origin and distribution of initiation
sites, "hot spots', or the assumed initiating temperature distribution
behind the shock front. Ramsey!™ argues such an assumption is not important

to derive the relation P2T=const., but evaluating this constant for different
explosives must depend on the mechanism that gives rise to the initial
heating and evolution of heat in the explosive. Howe, et allS have shown
that shock initiation of detonation consists of two processes: an ignition
process and a build up process. They present evidence that the build up

to detonation is controlled by a heat transfer dominated grain burning
process. The ignition process appears to arise from shock induced "hot
spots,"

The necessity of the hot spot concept of Bowden!6 and Eyring17 arises
from the fact that under shock initiation conditions the bulk temperature
of the explosive is much too low to initiate decomposition. Various
mechanisms have been proposed to account for the hot spots controlling the
ignition process. Bowden and Yoffe!® proposed adiabatic compression of
gas as the principal mechanism, but also discussed plastic work in solid
explosives as a mechanism. Mader!® studied the mechanism of direct heating
of the explosive by void closure; Seeley!® has suggested jetting during void
closure as the mechanism for hot spot formation; and Delpuech, et al20
suggest shock induced free radical formation as playing the critical role
in the initiation process.

) . Jare e g

..i'o;

II. FREY'S SHEAR BAND MODEL

Recently Frey?! has proposed a shear band theory for hot spot formation.
Frey suggested these shear bands might arise during void closure or during
shock induced displacement of the explosive near irregularities at the
explosive-container wall interface, as shown in Figure 1. Starting with this
® ) hypothesis, Frey showed that shearing under pressurc could lead to sufficiently
; rapid heating of the explosive to generate hot spots in the explosive adequate
to give rise to initiation of the explosive. However, the shear velocities
2 indicated by the shear band mechanisms shown in Figure 1 do not depend

>V

-

on the explosive material properties. As such, the P2T criterion as a property
of the explosive would be difficult to understand.
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Until recently, shear bands in shock loaded explosives had not been

observed. Gibbons?? has recently obtained scanning electron micrographs
. showing an extensive shear band structure in shock loaded comp B, Figure 2.
'l The comp B also shows evidence of incipient reaction of the TNT matrix in
: the area of the shear bands. From the location of these shear bands it is
apparent that the shear bands do not result from either cavity collapse or
container wall irregularities. The shear bands could also arise from the shear
stress ficld in the explosive produced by deformation of the explosive container.
llowever, that flow field depends primarily on the characteristics of the container
and the container's response to impulsive loading, and only to a lesser degree
on the properties of the comp B fill. Such an origin for shears leading to ini-

tiation of the explosive would not be likely to involve the P2T criterion.
Another cause for the occurrence of the shear bands is required. A mechanism for
shear band production that makes use of Frey's shear band theory and that provides

. . 2 . . . .
a procedure for the computation of P™T criterion values for explosives is pre-

sented below. In a separate report,z3 we derive the PZT criterion based on the
model presented here.

IIT1. SHEAR BAND PRODUCTION BY SHOCK LOADING IN HETEROGENEOUS EXPLOSIVES

;
1

Assume a shock passes through a material, such as comp B, consisting of
grains of one material, RDX, embedded in a matrix of a second material, here
TNT. The pressure p behind the shock is given in terms of the density p,
sound velocity u, and particle velocity v by

-4

p = p uv . (1)

Although the pressure is the same in both the RDX grains and the TNT matrix,
since the impedance, pu, differs in the two materials, the particle velocity ]
will differ in the two constituents, as indicated in Figure 3. Table 1 shows i
the densities, sound velocities and particle velocities for RDX and TNT for i
a 2.5 GPa shock pressure. The resulting velocity difference is ;
-

From Table 1 this gives 70 m/s. .

TABLE 1 [

Densities, Sound Velocities, and Particle Velocities for the
- Constituents of Comp B at 2.5 GPa*

{ o (g/cm®) u(kmn/s) v (kn/s) .
‘ e ’
y RDX 1.80 3.53 0.395
) TNT 1.61 3.34 0.465
*Computed from shock Hugoniot data in The LLNL Fxplosives Handbook, B. M.
(] Dobratz. University of California, Livermore, CA 94550. See table 7.5. 1
' 9
.‘ |

vy
.
.




Figure 2.

Scanning Electron Micrograph of Shock Loaded Comp B.

Magnitude of the shock was about 2.5 GPa. The grains are

RDX particles which are embedded in the TNT matrix. The

shear bands run principally between the RDX grains, although
some shear bands run through the RDX grains. This area was
discolored brown by incipient reaction of the TNT. (A) Magni-
fication is 750X; (B) Enlargement of upper right of (A) at a
magnification of 1500X.
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Figurc 3. Schematic Represcentation of a Shock Passing Through a Heterogencous
Material. The shock velocities differ in the two materials as do
the particle velocities, As a result, a velocity gradient will
develop across these materials giving rise to shear,
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[t is to be noted that even in a single constituent explosive,a similar
result will occur. The propagation velocity for a sound wave differs
along various crystal orientations. In such materials, for individual
rains, will differ significantly from u f
g s u(lOO) 1 g ) (111) or u(OlO) or example

(where the subscripts refer to the principal axes along the crystal grains

of the explosive.) Thus,we would obtain various shear velocities depending

on crystal orientations. For a crystal having the (111) plane parallel to the
(100) plane in a neighboring crystal we would have

Vs T Voo T Vi . (3)

Unfortunately, sound velocity data along different crystal axes for explosives
is too sketchy for our present needs, so we will confine our interest to two
constituent explosives.

We will also limit our treatment to the case in which the shear takes
place in the matrix. In general, where the effective shear strength of the
explosive approximates the shear strength of the matrix, we may treat the
process of shear formation as taking place in the matrix. where the shear
strength approximates the shear strength of the grains, shear formation
should be calculated for the grains. In other cases. we must make calculations
for shearing that can occur in either the matrix or the grains. In such cases,

5
the smaller of the calculated P™T values obtained is to be taken for the critical
value characterizing the explosive. Thus, generalization of the present ap-
proach can be achieved in a straight forward way.

It should be noted that shear band formation described here constitutes
the incipient mechanism for shear failure. Large scale mechanical failure of
the explosive is associated with the arrival of relief waves from free surfaces
(failure of the explosive's container walls, for example). The arrival of
these relief waves lead to the growth of the incipient shears into larger
shears that ultimately connect to form macroscopic cracks in the explosive.

IV. SHEAR VELOCITY FOR TWO CONSTITUENT EXPLOSIVES

Writing P10 for the density and sound velocity in the matrix and

v5,u, for the density and sound velocity for the included grains we write

OoUy = Pty

(4)
P141P M2

where a negative result indicates shearing results from a slower matrix

particle velocity. This velocity is the overall shear velocity between the

two constituents of the explosive. It is not the shear band shear velocity
however, as it does not take account of the number of shear bands (on average)
in the matrix lying between two grains. As the shock passes between two grains,
the displaced material will strain until relieved by the development of cne or
more shear bands.

12
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In Frey's analysis, the shear velocity occurs as a parameter dependent on
the circumstances of cavities and container irregularities. In the present case,
we see that the velocity difference is dependent on the physical properties of
the cxplosive. In the case of comp B, v, (km/s) is given, approximately, in
terms of the pressure p (GPa) by

-2
v, = 279 x 10°7p . (5)
24 ) . .
Frey shows that there is a functional relation between shear velocity and the

shock pressure, where time to reach a critical ignition temperature appears

as a parameter, Figure 4. With Frey's computed results for the shear velocity
versus shock pressure for TNT as shown in Figure 4, and the reclation between
shock pressure and shear velocity for the TNT matrix in comp B, as given in
Equation 5, we can solve to obtain the shock pressure leading to a given ignition
temperature in a specified time. From Figure 4, we obtain a solution of

v_ = 40.8 m/s and p = 1.42 GPa. Assuming the ignition temperature of 1000°K

S 5
as used by Frey, we calculate a P'T criterion of
2 5 1012 p 2
p T)Crit = 2.02 x (Pa"s) . (6)
The result is to be compared with an experimental value of 4.41 x 1012 Pazs.
The difference in values obtained here arises from the fact that the shear
velocity in Equation 5 is not the shear band shear velocity, but instead
the overall shear velocity between the grains of RDX and matrix of TNT. Let
us now turn to the question of the shear band density which will allow us to
obtain the shear band shear velocity.

V. SHEAR BAND DENSITY

To obtain the shear band shear velocity v, , it is necessary to derive the

b’
density of the shear bands in the matrix material. Consider the material dis-
placement as shown in Figure 5. After the shock passes through the explosive,
a shear gradient will develop due to the resistance to shear at the matrix-
grain interface. In a time t assumed to be very short (i.e., before shear
banding develops) the material behind the shock will assume, approximately,
a rhomboidal displacement as seen in Figure 5. Figure 5 shows one of these
rhomboidal sections broken into several incipient shear bands of width d and
strain 6d such that

total strain in time t Vst (7)

8d = number of shear bands = D/d .

The failure angle Omax at which shear occurs is related to the strain &d by

&y (8)

Where ”max is a property of the material. Of course, Figure 5 idealizes the

regularity of the overall process.

14
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The time at which this shearing occurs depends on the propagation of stress
relief into the material as shear banding develops. Thus, in a time t such a
relief wave can propagate only a distance ult. This means that the next

ncarest shear will be located at most a distance u t away. Since the process

is more nearly stochastic, the average value for the separation of the shear

bands will be half ult. Since that distance is also d, we have

'yt = d. (9)
Therefore, from Equations 7, 8, and 9, we have

maxnul
d = _jxi:__— . (10)

Now substituting from Equation 4 for v, we obtain

) u
Omax U111 2%

2p (ojupme Uyl

(11)

The number of shear bands in the gap between grains, n* is, approximately,

ap (oyuy - pyYy)

n* = 2b/d = (12)
Onax’1P1V1° M2,
qu\is g¢iven in terms of the shear modulus G and shear strength max by
oqu/G. The shear modulus can also be expressed in terms of the Young's
elastic modulus E and Poisson's ratio v by %E/(1+v). Thus,
Omax = 2 (1+v) omax/E (13)

The value of the shear band shear velocity vy
by n, where

is given by dividing v,

n=n*2 |, (14)
Since both v and n are linear in p, vy is independent of p. We have from
Equations (4) and (12)

= -
Vb = 2 Y1Yax . (15)

For E = 5.4 GPa, v = 0.3 and Orax = 0.07 GPa, we have from Equation (13)

0 = 0,034 (16)
max
for TNT. With u, of 3.34 km/s as given in Table 1, we obtain from Equation (15),
vy = 57 m/s for the shear band shear velocity in the TNT matrix material.
16
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From Figure 4,we see this yields an intercept at a shock pressure of 1.30 GPa.
This value of the pressure acting for 1 us yields for the computed P2T value

2. 1.69 1012 p 2
., = 1. a
P F)Crlt X s . (17)
This value is somewhat lower than the experimental value of 4.4 x 1012 Pazs.
However, the criterion for initiation of the explosive used in Frey's
calculation is similarly approximate. It should be pointed out that as treated here,
this is only an initiation criterion, and not a detonation criterion, as time
must be allowed for the incipient burn of the explosive at these hot spots to
25

generate self sustaining pressures. In a separate réport, this problem is con-
sidered in some detail and shown to contribute only a small contribution to the

PZT value we have here. Thus, using an expression for the shear band shear velocity
under shock Joading conditions, we can employ Frey's shear band theory to calculate

2
PGT)Cri from the properties of explosive materials.

t
VI. CONCLUSIONS

A theory relating shock loading to the development of shear bands in explo-
sives has been presented. This theory together with Frey's shear band theory
for the development of hot spots due to shear heating along these shear bands

2 . .
makes it possible to compute P T%rit values for explosives from the mechanical

and thermodynamic properties of the explosive.
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